Weighted Residual NMF with Spatial Regularization for Hyperspectral Unmixing
نویسندگان
چکیده
This paper proposes a weighted residual nonnegative matrix factorization (NMF) with spatial regularization to unmix hyperspectral data. NMF decomposes into the product of two matrices. However, is known be generally sensitive noise, which makes difficult retrieve global minimum underlying objective function. To overcome this limitation, we include weighting mechanism in conventional formulation. strategy treats each row based on factor. In manner, residuals large values are penalized less and small more make unmixing problem robust. Furthermore, weight term form an ℓ1 norm regularizer provide information abundance matrix. Experimental results conducted validate effectiveness proposed method.
منابع مشابه
HALS-based NMF with flexible constraints for hyperspectral unmixing
In this article, the hyperspectral unmixing problem is solved with the nonnegative matrix factorization (NMF) algorithm. The regularized criterion is minimized with a hierarchical alternating least squares (HALS) scheme. Under the HALS framework, four constraints are introduced to improve the unmixing accuracy, including the sum-to-unity constraint, the constraints for minimum spectral dispersi...
متن کاملHyperspectral Unmixing via Double Abundance Characteristics Constraints Based NMF
Abstract: Hyperspectral unmixing aims to obtain the hidden constituent materials and the corresponding fractional abundances from mixed pixels, and is an important technique for hyperspectral image (HSI) analysis. In this paper, two characteristics of the abundance variables, namely, the local spatial structural feature and the statistical distribution, are incorporated into nonnegative matrix ...
متن کاملManifold regularization for sparse unmixing of hyperspectral images
BACKGROUND Recently, sparse unmixing has been successfully applied to spectral mixture analysis of remotely sensed hyperspectral images. Based on the assumption that the observed image signatures can be expressed in the form of linear combinations of a number of pure spectral signatures known in advance, unmixing of each mixed pixel in the scene is to find an optimal subset of signatures in a v...
متن کاملA Low-rank Tensor Regularization Strategy for Hyperspectral Unmixing
Tensor-based methods have recently emerged as a more natural and effective formulation to address many problems in hyperspectral imaging. In hyperspectral unmixing (HU), low-rank constraints on the abundance maps have been shown to act as a regularization which adequately accounts for the multidimensional structure of the underlying signal. However, imposing a strict low-rank constraint for the...
متن کاملTech Report: A Fast Multiscale Spatial Regularization for Sparse Hyperspectral Unmixing
Sparse hyperspectral unmixing from large spectral libraries has been considered to circumvent limitations of endmember extraction algorithms in many applications. This strategy often leads to ill-posed inverse problems, which can benefit from spatial regularization strategies. While existing spatial regularization methods improve the problem conditioning and promote piecewise smooth solutions, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Geoscience and Remote Sensing Letters
سال: 2022
ISSN: ['1558-0571', '1545-598X']
DOI: https://doi.org/10.1109/lgrs.2022.3182042